25 October 2016 Hastings Technology Metals Limited ABN 43 122 911 399 ASX Code: Shares - HAS Level 25, 31 Market Street Sydney NSW 2000 PO Box Q128 Queen Victoria Building NSW 1220 Australia Telephone: +61 2 8268 8689 Facsimile: +61 2 8268 8699 info@hastingstechmetals.com # **Board** Charles Lew (Executive Chairman) Anthony Ho (Non-Exec Director) Malcolm Mason (Non-Exec Director) Jean Claude Steinmetz (Non-Exec Director) www.hastingstechmetals.com # NEW DEPOSIT AT FRASER'S SOUTHWEST – AUER DEPOSIT ## **HIGHLIGHTS** - First assay results received from drilling in the Fraser's Southwest area confirm a new deposit at Auer. - Best intersections to date include:- 5m (21-26m) at 2.00%TREO including $0.78\% Nd_2O_3 + Pr_2O_3$ 6m (12-18m) at 2 08%TREO including $0.70\% Nd_2O_3 + Pr_2O_3$ 4m (15-19m) at 2.10%TREO including $0.81\% Nd_2O_3 + Pr_2O_3$ 4m (72-76m) at 1.82%TREO including $0.68\% Nd_2O_3 + Pr_2O_3$ 8m (8-16m) at 1.68%TREO including $0.67\% Nd_2O_3 + Pr_2O_3$ 3m (8-11m) at 1.92%TREO including $0.72\% Nd_2O_3 + Pr_2O_3$, and 6m (91-97m) at 1.54%TREO including $0.55\% Nd_2O_3 + Pr_2O_3$ Auer mineralisation compatible with the higher-value Eastern Belt-style mineralisation planned for early development. ## **INTRODUCTION** The Directors of Hastings Technology Metals Limited (ASX:HAS) are pleased to announce that initial drilling results from the Fraser's Southwest area has identified a new deposit, Auer, with potential for additional mineable resources within the Yangibana Project, in the Gascoyne Province of Western Australia. Assays have been received from drilling of the previously untested Auer, Mosander and Demarcay prospects. Results from Auer are particularly encouraging, indicating the delineation of an 800m-long mineralised zone that remains open to the north and at depth, with other zones also identified. Hastings has now completed the first phase of drilling at Fraser's Southwest with the rig now relocated to Bald Hill where hydrology drilling has commenced. A total of 7,239 m of reverse circulation drilling was completed in 124 holes during the programme. Assay results from the remaining holes are expected in the coming weeks. ## **RESOURCE EXPANSION DRILLING** Ongoing drilling to identify additional resources in the Fraser's Southwest area has intersected the target ironstone- and phoscorite-hosted rare earths mineralisation at all sites tested. At Auer, mineralisation has been intersected both in the outcropping area as identified in rock chip sampling earlier this year and in the northern extension (Auer North) where the target occurs under cover and was only defined by the recent aeromagnetic data. Assay results have been received from drilling of the Auer, Mosander and Demarcay prospects. Figure 1 shows the location of these prospects in relation to Hastings' other deposits and prospects in the Yangibana Project. Figure 1 – Yangibana Project, location of Auer, Auer North, Mosander and Demarcay prospects Table 1 provides the best intersections from the Auer prospect. | Hole | From | То | Interval | %TREO | %Nd ₂ O ₃ +Pr ₂ O ₃ | %(Nd ₂ O ₃ +Pr ₂ O ₃)/TREO | |------|------|-----|----------|-------|---|---| | AURC | (m) | (m) | (m) | | | | | 1 | 14 | 18 | 4 | 1.27 | 0.47 | 37 | | 6 | 29 | 34 | 5 | 1.54 | 0.51 | 34 | | 15 | 21 | 26 | 5 | 2.00 | 0.78 | 39 | | 17 | 15 | 19 | 4 | 2.10 | 0.81 | 38 | | 18 | 8 | 16 | 8 | 1.68 | 0.67 | 40 | | 25 | 8 | 14 | 6 | 1.41 | 0.52 | 36 | | 26 | 8 | 11 | 3 | 1.92 | 0.72 | 36 | | 29 | 72 | 76 | 4 | 1.82 | 0.68 | 37 | | 32 | 46 | 51 | 5 | 1.13 | 0.41 | 37 | | 33 | 91 | 97 | 6 | 1.54 | 0.55 | 36 | | 41 | 12 | 18 | 6 | 2.08 | 0.70 | 34 | Table 1 – Yangibana Project – Auer Prospect drill best intersections Figure 2 shows the locations of the holes drilled at Auer against the radiometric (Th) data derived from the recent aerial survey. This figure shows the excellent correlation between the geophysical data and the drillhole intersections. Figure 2 – Yangibana Project – Auer South drillholes on radiometric (Th) base ___ Of the approximately 1.4km of the Auer prospect, continuous mineralisation has been intersected over 800m between AURC018 and AURC036 and 150m between AURC025 and AURC041 (Figure 2). Results from Mosander and Demarcay returned variable results with the best intersections as shown in Table 2. | Hole | From | То | Interval | %TREO | %Nd ₂ O ₃ +Pr ₂ O ₃ | %(Nd ₂ O ₃ +Pr ₂ O ₃)/TREO | |-------|------|-----|----------|-------|---|---| | No. | (m) | (m) | (m) | | | | | MSRC6 | 33 | 34 | 1 | 1.37 | 0.34 | 25 | | MSRC9 | 24 | 28 | 4 | 0.90 | 0.36 | 40 | | DMRC3 | 6 | 7 | 1 | 1.49 | 0.79 | 53 | | DMRC5 | 12 | 14 | 2 | 1.37 | 0.61 | 44 | | DMRC6 | 16 | 19 | 3 | 1.23 | 0.44 | 35 | Table 2 – Yangibana Project – Mosander and Demarcay Prospects, best intersections Results confirm a new deposit at Auer. Updated resource estimates are to be carried out in the coming weeks based on the recent drill results for Bald Hill and Fraser's, and prospects at Fraser's Southwest will be included once all assay results are available. The (Nd₂O₃+Pr₂O₃)/TREO ratio of the Auer intersections averages 37% and this figure is of significant economic importance. It indicates that the Auer mineralisation is more similar to the Eastern Belt deposits (Bald Hill and Fraser's) than the Western Belt deposits (Yangibana West to Kane's Gossan) (see Figure 1) as shown in Table 3. | Deposit/Prospect | Mean % | |----------------------|--------| | Eastern Belt | | | Fraser's | 44 | | Bald Hill | 42 | | Auer | 37 | | Western Belt | | | Yangibana West/North | 27 | | Gossan | 25 | | Lion's Ear | 26 | | Hook | 22 | | Kane's Gossan | 29 | Table 3 – Yangibana Project – comparison of (Nd₂O₃+Pr₂O₃)/TREO ratios for the various deposits/prospects ## **CONCLUSIONS** The resource expansion drilling programme at Fraser's Southwest has been successful and will increase the resource base for the project, more specifically in the Eastern Belt where the mineralisation is enriched in the target elements neodymium and praseodymium, and where the Company holds 100% interest. Auer mineralisation is expected to be metallurgically-compatible with the Eastern Belt mineralisation which is planned to be the first feed material to the proposed processing plant. This will extend the life of the higher-value Eastern Belt mineralisation and further improve on the economics of the operation. #### **TERMINOLOGY USED IN THIS REPORT** **TREO** is the sum of the oxides of the light rare earth elements lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) and the heavy rare earth elements europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y). # For further information please contact: Andy Border, General Manager Exploration, +61 2 8268 8689 Charles Tan, Chief Operations Officer, +61 2 8268 8689 # **About Hastings Technology Metals** - Hastings Technology Metals is a leading Australian rare earths company, with two rare earths projects hosting JORC-compliant resources in Western Australia. - The Yangibana Project hosts JORC Indicated and Inferred Resources totalling 12.36 million tonnes at 1.10% TREO, including 0.35% Nd₂O₃+Pr₂O₃, comprising 8.13 million tonnes at 1.11% TREO Indicated Resources and 4.24 million tonnes at 1.09% TREO in Inferred Resources). - The Brockman deposit contains JORC Indicated and Inferred Resources totalling 41.4 million tonnes (comprising 32.3mt Indicated Resources and 9.1mt Inferred Resources) at 0.21% TREO, including 0.18% HREO, plus 0.36% Nb₂O₅ and 0.90% ZrO₂. - Rare earths are critical to a wide variety of current and new technologies, including smart phones, hybrid cars, wind turbines and energy efficient light bulbs. - The Company aims to capitalise on the strong demand for critical rare earths created by expanding new technologies. ___ # Competent Persons' Statement The information in this announcement that relates to Resources is based on information compiled by Simon Coxhell. Simon Coxhell is a consultant to the Company and a member of the Australasian Institute of Mining and Metallurgy. The information in this announcement that relates to Exploration Results is based on information compiled by Andy Border, an employee of the Company and a member of the Australasian Institute of Mining and Metallurgy. Each has sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this announcement and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code"). Each consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Appendix 1 – Collar data | Hole_ID | Prospect | Easting | Northing | RL | Decl | Azi | EOH(m) | |---------|----------|-----------|------------|--------|------|-----|--------| | AURC004 | Auer | 424539.23 | 7350079.50 | 319.42 | -60 | 110 | 54 | | AURC005 | Auer | 424556.15 | 7350073.17 | 319.71 | -60 | 110 | 30 | | AURC035 | Auer | 424513.41 | 7350093.65 | 319.04 | -60 | 110 | 90 | | AURC003 | Auer | 424539.09 | 7350029.34 | 321.10 | -60 | 110 | 21 | | AURC008 | Auer | 424515.62 | 7350040.29 | 320.73 | -60 | 110 | 52 | | AURC034 | Auer | 424486.56 | 7350052.09 | 320.21 | -60 | 110 | 96 | | AURC002 | Auer | 424510.25 | 7349979.48 | 323.83 | -60 | 110 | 21 | | AURC009 | Auer | 424475.47 | 7349994.46 | 322.77 | -60 | 110 | 68 | | AURC001 | Auer | 424483.54 | 7349931.39 | 326.37 | -60 | 110 | 24 | | AURC010 | Auer | 424406.53 | 7349850.61 | 330.77 | -60 | 120 | 22 | | AURC011 | Auer | 424369.49 | 7349773.45 | 333.53 | -60 | 110 | 18 | | AURC012 | Auer | 424340.32 | 7349730.01 | 333.49 | -60 | 110 | 24 | | AURC032 | Auer | 424315.94 | 7349741.18 | 332.24 | -60 | 120 | 72 | | AURC015 | Auer | 424277.50 | 7349678.85 | 329.86 | -60 | 120 | 42 | | AURC031 | Auer | 424254.03 | 7349692.46 | 328.47 | -60 | 120 | 90 | | AURC033 | Auer | 424248.20 | 7349697.08 | 328.23 | -70 | 120 | 114 | | AURC013 | Auer | 424250.87 | 7349617.59 | 329.13 | -60 | 110 | 18 | | AURC016 | Auer | 424251.38 | 7349615.71 | 329.24 | -60 | 110 | 30 | | AURC030 | Auer | 424225.09 | 7349623.44 | 328.03 | -60 | 110 | 84 | | AURC014 | Auer | 424236.52 | 7349578.65 | 330.43 | -60 | 110 | 18 | | AURC017 | Auer | 424216.20 | 7349533.48 | 332.38 | -60 | 120 | 24 | | AURC029 | Auer | 424192.63 | 7349547.98 | 331.37 | -60 | 120 | 84 | | AURC018 | Auer | 424181.59 | 7349478.05 | 333.45 | -60 | 110 | 24 | | AURC019 | Auer | 424165.08 | 7349427.25 | 332.85 | -60 | 110 | 24 | | AURC020 | Auer | 424133.43 | 7349274.40 | 328.99 | -60 | 110 | 28 | | AURC021 | Auer | 424102.70 | 7349179.01 | 329.13 | -60 | 110 | 30 | | AURC022 | Auer | 424069.64 | 7349080.63 | 330.34 | -60 | 110 | 30 | | AURC023 | Auer | 424058.62 | 7349028.64 | 329.97 | -60 | 110 | 30 | | AURC024 | Auer | 424042.20 | 7348977.62 | 328.41 | -60 | 100 | 30 | | AURC025 | Auer | 424016.93 | 7348927.66 | 326.03 | -60 | 110 | 30 | | AURC038 | Auer | 423994.68 | 7348941.94 | 325.76 | -60 | 110 | 96 | | AURC026 | Auer | 423985.65 | 7348879.11 | 323.60 | -60 | 110 | 27 | | AURC039 | Auer | 423958.44 | 7348888.71 | 323.26 | -60 | 110 | 54 | | AURC027 | Auer | 423955.89 | 7348831.34 | 321.50 | -60 | 110 | 24 | | AURC040 | Auer | 423930.60 | 7348842.06 | 321.41 | -60 | 110 | 72 | | AURC041 | Auer | 423928.49 | 7348779.37 | 319.66 | -60 | 110 | 30 | | AURC042 | Auer | 423906.16 | 7348788.12 | 319.60 | -60 | 110 | 74 | | AURC028 | Auer | 423897.83 | 7348729.28 | 318.10 | -60 | 110 | 30 | | AURC006 | Auer | 424570.32 | 7350127.94 | 318.79 | -60 | 110 | 42 | | AURC007 | Auer | 424540.74 | 7350140.74 | 318.36 | -60 | 110 | 92 | | AURC036 | Auer | 424603.94 | 7350176.39 | 318.30 | -60 | 140 | 42 | | AURC037 | Auer | 424585.84 | 7350195.34 | 318.09 | -60 | 140 | 78 | | MSRC005 | Mosander | 424031.49 | 7348388.96 | 320.14 | -90 | 0 | 30 | | MSRC004 | Mosander | 424050.47 | 7348397.92 | 320.78 | -90 | 0 | 30 | | MSRC003 | Mosander | 424062.65 | 7348403.08 | 320.92 | -90 | 0 | 18 | |---------|----------|-----------|------------|--------|-----|-----|----| | MSRC001 | Mosander | 424046.58 | 7348419.49 | 320.15 | -90 | 0 | 21 | | MSRC002 | Mosander | 424029.32 | 7348413.86 | 319.84 | -90 | 0 | 18 | | MSRC006 | Mosander | 424014.30 | 7348406.14 | 319.33 | -90 | 0 | 42 | | MSRC010 | Mosander | 424044.18 | 7348334.77 | 319.85 | -90 | 0 | 18 | | MSRC011 | Mosander | 424024.87 | 7348330.91 | 319.38 | -90 | 0 | 16 | | MSRC012 | Mosander | 424007.09 | 7348328.82 | 319.10 | -90 | 0 | 42 | | MSRC007 | Mosander | 424057.21 | 7348314.80 | 319.29 | -90 | 0 | 24 | | MSRC008 | Mosander | 424034.81 | 7348299.62 | 318.78 | -90 | 0 | 36 | | MSRC009 | Mosander | 424014.74 | 7348285.34 | 318.60 | -90 | 0 | 36 | | DMRC009 | Demarcay | 424131.62 | 7347711.20 | 315.72 | -60 | 150 | 24 | | DMRC001 | Demarcay | 424090.29 | 7347696.36 | 316.46 | -60 | 150 | 30 | | DMRC002 | Demarcay | 424053.25 | 7347678.68 | 316.62 | -60 | 150 | 24 | | DMRC003 | Demarcay | 424015.30 | 7347660.98 | 316.70 | -60 | 150 | 18 | | DMRC004 | Demarcay | 423972.86 | 7347646.14 | 316.07 | -60 | 150 | 20 | | DMRC005 | Demarcay | 423934.98 | 7347612.06 | 315.54 | -60 | 150 | 24 | | DMRC006 | Demarcay | 423897.84 | 7347596.69 | 314.73 | -60 | 150 | 30 | | DMRC007 | Demarcay | 423918.02 | 7347645.18 | 315.09 | -60 | 150 | 78 | | DMRC008 | Demarcay | 424003.48 | 7347683.62 | 315.91 | -60 | 150 | 60 | | DMRC010 | Demarcay | 424187.93 | 7347759.88 | 313.66 | -60 | 140 | 90 | | DMRC011 | Demarcay | 424178.17 | 7347778.00 | 313.54 | -60 | 140 | 60 | Appendix 2 – Significant Assay results, AU=Auer, MS=Mosander, DM=Demarcay Hole No. From To %TREO %(Nd2O3+Pr2O3) | Hole No. | From | То | %TREO | %(Nd2O3+Pr2O3) | |----------|------|-----|-------|----------------| | AURC001 | 13 | 14 | 0.05 | 0.01 | | AURC001 | 14 | 15 | 1.30 | 0.42 | | AURC001 | 15 | 16 | 0.78 | 0.29 | | AURC001 | 16 | 17 | 1.07 | 0.43 | | AURC001 | 17 | 18 | 1.91 | 0.71 | | AURC001 | 18 | 19 | 0.25 | 0.09 | | AURC001 | 19 | 20 | 0.42 | 0.16 | | | | | | | | AURC002 | 11 | 12 | 0.45 | 0.16 | | AURC002 | 12 | 13 | 0.62 | 0.23 | | AURC002 | 13 | 14 | 0.84 | 0.30 | | AURC002 | 14 | 15 | 2.04 | 0.75 | | AURC002 | 15 | 16 | 0.81 | 0.29 | | AURC002 | 16 | 17 | 0.04 | 0.01 | | AURC002 | 17 | 18 | 0.07 | 0.03 | | | | | | | | AURC003 | 11 | 12 | 0.43 | 0.15 | | AURC003 | 12 | 13 | 1.05 | 0.38 | | AURC003 | 13 | 14 | 0.87 | 0.34 | | AURC003 | 14 | 15 | 1.30 | 0.57 | | AURC003 | 15 | 16 | 1.29 | 0.60 | | AURC003 | 16 | 17 | 0.71 | 0.36 | | AURC003 | 17 | 18 | 0.63 | 0.29 | | AURC003 | 18 | 19 | 0.11 | 0.05 | | | | | | | | AURC004 | 43 | 44 | 0.06 | 0.02 | | AURC004 | 44 | 45 | 0.72 | 0.26 | | AURC004 | 45 | 46 | 2.11 | 0.76 | | AURC004 | 46 | 47 | 1.09 | 0.38 | | AURC004 | 47 | 48 | 0.75 | 0.29 | | AURC004 | 48 | 49 | 0.39 | 0.17 | | | | | | | | AURC006 | 27 | 28 | 0.40 | 0.18 | | AURC006 | 28 | 29 | 0.50 | 0.19 | | AURC006 | 29 | 30 | 1.63 | 0.61 | | AURC006 | 30 | 31 | 2.24 | 0.69 | | AURC006 | 31 | 32 | 1.08 | 0.35 | | AURC006 | 32 | 33 | 1.23 | 0.42 | | AURC006 | 33 | 34 | 1.49 | 0.50 | | AURC006 | 34 | 35 | 0.53 | 0.17 | | AURC007 | 67 | 68 | 0.66 | 0.26 | | AURC007 | 68 | 69 | 1.14 | 0.39 | | AURC007 | 69 | 70 | 0.83 | 0.29 | | | | . • | | | | - | | | | | |---------|----|----|------|------| | AURC007 | 70 | 71 | 1.68 | 0.58 | | AURC007 | 71 | 72 | 1.17 | 0.41 | | | | | | | | AURC008 | 40 | 41 | 0.03 | 0.01 | | AURC008 | 41 | 42 | 0.51 | 0.20 | | AURC008 | 42 | 43 | 1.15 | 0.56 | | AURC008 | 43 | 44 | 1.42 | 0.67 | | AURC008 | 44 | 45 | 1.34 | 0.49 | | AURC008 | 45 | 46 | 1.58 | 0.56 | | | | | | | | AURC009 | 60 | 61 | 0.24 | 0.09 | | AURC009 | 61 | 62 | 0.76 | 0.30 | | AURC009 | 62 | 63 | 0.70 | 0.24 | | AURC009 | 63 | 64 | 0.82 | 0.29 | | AURC009 | 64 | 65 | 0.62 | 0.22 | | | | | | | | AURC010 | 10 | 11 | 0.08 | 0.03 | | AURC010 | 11 | 12 | 0.32 | 0.12 | | AURC010 | 12 | 13 | 0.99 | 0.38 | | AURC010 | 13 | 14 | 0.57 | 0.23 | | AURC010 | 14 | 15 | 0.70 | 0.28 | | | | | | | | AURC012 | 12 | 13 | 0.04 | 0.02 | | AURC012 | 13 | 14 | 1.46 | 0.56 | | AURC012 | 14 | 15 | 0.11 | 0.04 | | AURC012 | 15 | 16 | 1.56 | 0.60 | | AURC012 | 16 | 17 | 0.43 | 0.17 | | AURC012 | 17 | 18 | 0.77 | 0.30 | | | | | | | | AURC015 | 19 | 20 | 0.17 | 0.07 | | AURC015 | 20 | 21 | 0.17 | 0.07 | | AURC015 | 21 | 22 | 1.93 | 0.78 | | AURC015 | 22 | 23 | 1.78 | 0.68 | | AURC015 | 23 | 24 | 1.11 | 0.43 | | AURC015 | 24 | 25 | 4.10 | 1.59 | | AURC015 | 25 | 26 | 1.09 | 0.39 | | AURC015 | 26 | 27 | 0.11 | 0.04 | | AURC015 | 27 | 28 | 0.03 | 0.01 | | | | | | | | AURC016 | 20 | 21 | 0.10 | 0.04 | | AURC016 | 20 | 21 | 1.07 | 0.32 | | AURC016 | 20 | 21 | 0.72 | 0.22 | | AURC016 | 20 | 21 | 0.19 | 0.06 | | | | | | | | AURC017 | 14 | 15 | 0.13 | 0.05 | | AURC017 | 15 | 16 | 1.96 | 0.73 | | | | | | | | AURC017 | 16 | 17 | 0.97 | 0.36 | |--------------------|---------|----------|--------------|--------------| | AURC017 | 17 | 18 | 4.45 | 1.75 | | AURC017 | 18 | 19 | 1.04 | 0.40 | | AURC017 | 19 | 20 | 0.16 | 0.06 | | | | | | | | AURC018 | 8 | 9 | 0.53 | 0.21 | | AURC018 | 9 | 10 | 1.44 | 0.61 | | AURC018 | 10 | 11 | 1.82 | 0.78 | | AURC018 | 11 | 12 | 1.95 | 0.80 | | AURC018 | 12 | 13 | 4.07 | 1.59 | | AURC018 | 13 | 14 | 2.35 | 0.88 | | AURC018 | 14 | 15 | 0.48 | 0.18 | | AURC018 | 15 | 16 | 0.81 | 0.32 | | AURC018 | 16 | 17 | 0.27 | 0.10 | | ALIDOOSE | 0 | 0 | 1.40 | 0.50 | | AURCO25 | 8 | 9 | 1.40 | 0.50 | | AURC025
AURC025 | 9
10 | 10
11 | 2.80
1.14 | 1.07
0.42 | | AURC025 | 10 | 12 | 1.14 | 0.42 | | AURC025 | 12 | 13 | 0.67 | 0.24 | | AURC025 | 13 | 14 | 0.64 | 0.22 | | AUNCOZS | 13 | 14 | 0.04 | 0.22 | | AURC026 | 7 | 8 | 0.09 | 0.03 | | AURC026 | 8 | 9 | 0.75 | 0.25 | | AURC026 | 9 | 10 | 2.26 | 0.84 | | AURC026 | 10 | 11 | 2.76 | 1.05 | | AURC026 | 11 | 12 | 0.48 | 0.17 | | | | | | | | AURC029 | 70 | 71 | 0.25 | 0.08 | | AURC029 | 71 | 72 | 0.58 | 0.20 | | AURC029 | 72 | 73 | 2.77 | 0.94 | | | | | | | | AURC029 | 73 | 74 | 1.55 | 0.57 | | AURC029 | 74 | 75 | 1.22 | 0.49 | | AURC029 | 75 | 76 | 1.73 | 0.71 | | | | | | | | AURC029 | 76 | 77 | 0.43 | 0.17 | | | | | | | | AURC030 | 58 | 59 | 0.43 | 0.14 | | AURC030 | 59 | 60 | 0.75 | 0.25 | | AURC030 | 60 | 61 | 1.27 | 0.42 | | | 61 | 62 | 0.90 | 0.29 | | | | 11/ | U.YU | 0.29 | | AURC030
AURC030 | 62 | 63 | 0.42 | 0.13 | | AURC030 | 63 | 64 | 0.52 | 0.17 | Ī | |---------|----|----|------|------|---| | AURC030 | 64 | 65 | 0.24 | 0.08 | | | | | | | | | | AURC031 | 66 | 67 | 0.09 | 0.03 | | | AURC031 | 67 | 68 | 1.10 | 0.41 | | | AURC031 | 68 | 69 | 1.50 | 0.56 | | | AURC031 | 69 | 70 | 0.37 | 0.14 | | | AURC031 | 70 | 71 | 0.05 | 0.02 | | | | | | | | | | AURC032 | 45 | 46 | 0.16 | 0.06 | | | AURC032 | 46 | 47 | 0.97 | 0.35 | | | AURC032 | 47 | 48 | 0.92 | 0.36 | | | AURC032 | 48 | 49 | 1.56 | 0.57 | | | AURC032 | 49 | 50 | 0.99 | 0.35 | | | AURC032 | 50 | 51 | 1.20 | 0.45 | | | AURC032 | 51 | 52 | 0.38 | 0.14 | | | AURC032 | 52 | 53 | 0.31 | 0.11 | | | AURC032 | 53 | 54 | 0.07 | 0.03 | | | | | | | | | | AURC033 | 90 | 91 | 0.20 | 0.07 | | | AURC033 | 91 | 92 | 1.82 | 0.67 | | | AURC033 | 92 | 93 | 2.97 | 1.07 | | | AURC033 | 93 | 94 | 0.98 | 0.36 | | | AURC033 | 94 | 95 | 0.12 | 0.04 | | | AURC033 | 95 | 96 | 2.04 | 0.72 | | | AURC033 | 96 | 97 | 1.29 | 0.44 | | | | | | | | | | AURC034 | 88 | 89 | 0.25 | 0.08 | | | AURC034 | 89 | 90 | 0.64 | 0.21 | | | AURC034 | 90 | 91 | 1.06 | 0.37 | | | AURC034 | 91 | 92 | 0.38 | 0.14 | | | AURC034 | 92 | 93 | 0.06 | 0.02 | | | | | | | | | | AURC035 | 74 | 75 | 0.31 | 0.12 | | | | | | | | 1 | | AURC035 | 75 | 76 | 2.54 | 0.85 | |---------|----|----|------|------| | AURC035 | 76 | 77 | 0.38 | 0.14 | | AURC035 | 77 | 78 | 0.66 | 0.23 | | AURC035 | 78 | 79 | 0.36 | 0.12 | | | | | | | | AURC036 | 31 | 32 | 0.22 | 0.08 | | AURC036 | 32 | 33 | 1.51 | 0.54 | | AURC036 | 33 | 34 | 2.08 | 0.80 | | AURC036 | 34 | 35 | 0.69 | 0.25 | | AURC036 | 35 | 36 | 0.10 | 0.03 | | | | | | | | AURC037 | 63 | 64 | 0.46 | 0.20 | | AURC037 | 64 | 65 | 1.77 | 0.74 | | AURC037 | 65 | 66 | 0.27 | 0.11 | | AURC037 | 66 | 67 | 0.58 | 0.25 | | AURC037 | 67 | 68 | 0.07 | 0.02 | | | | | | | | AURC039 | 39 | 40 | 0.04 | 0.02 | | AURC039 | 40 | 41 | 1.10 | 0.42 | | AURC039 | 41 | 42 | 0.82 | 0.28 | | AURC039 | 42 | 43 | 0.78 | 0.28 | | AURC039 | 43 | 44 | 0.11 | 0.03 | | | | | | | | AURC041 | 11 | 12 | 0.11 | 0.04 | | AURC041 | 12 | 13 | 1.08 | 0.38 | | AURC041 | 13 | 14 | 1.79 | 0.61 | | AURC041 | 14 | 15 | 2.00 | 0.65 | | AURC041 | 15 | 16 | 5.82 | 1.96 | | AURC041 | 16 | 17 | 0.59 | 0.20 | | AURC041 | 17 | 18 | 1.18 | 0.39 | | AURC041 | 18 | 19 | 0.04 | 0.01 | | | | | | | | MSRC005 | 6 | 7 | 0.13 | 0.04 | | MSRC005 | 7 | 8 | 1.80 | 0.55 | | MSRC005 | 8 | 9 | 0.35 | 0.11 | | MSRC005 | 9 | 10 | 0.82 | 0.24 | |--------------------|----------------|----------------|----------------------|----------------------| | MSRC005 | 10 | 11 | 0.10 | 0.03 | | | | | | | | MSRC006 | 22 | 23 | 0.26 | 0.08 | | MSRC006 | 23 | 24 | 0.83 | 0.26 | | MSRC006 | 24 | 25 | 0.27 | 0.10 | | MSRC006 | 25 | 26 | 0.38 | 0.12 | | MSRC006 | 33 | 34 | 1.37 | 0.34 | | MSRC006 | 34 | 35 | 0.71 | 0.18 | | | | | | | | MSRC009 | 23 | 24 | 0.07 | 0.03 | | MSRC009 | 24 | 25 | 1.41 | 0.57 | | MSRC009 | 25 | 26 | 1.02 | 0.40 | | MSRC009 | 26 | 27 | 0.59 | 0.23 | | MSRC009 | 27 | 28 | 0.59 | 0.23 | | MSRC009 | 28 | 29 | 0.22 | 0.08 | | | | | | | | MSRC010 | 3 | 4 | 1.05 | 0.31 | | MSRC010 | 4 | 5 | 0.29 | 0.08 | | | | | | | | DMRC003 | 4 | 5 | 0.02 | 0.01 | | DMRC003 | 5 | 6 | 0.02 | 0.01 | | DMRC003 | 6 | 7 | 1.49 | 0.79 | | DMRC003 | 7 | 8 | 0.04 | 0.01 | | | | | | | | DMRC004 | 12 | 13 | 0.09 | 0.04 | | DMRC004 | 13 | 14 | 0.45 | 0.20 | | DMRC004 | 14 | 15 | 0.34 | 0.15 | | | | | | | | DMRC005 | 10 | 11 | 0.07 | 0.03 | | DMRC005 | 11 | 12 | 0.09 | 0.04 | | DMRC005 | 12 | 13 | 0.56 | 0.24 | | DMRC005 | 13 | 14 | 2.18 | 0.97 | | DMRC005 | 14 | 15 | 0.13 | 0.05 | | DMRC005 | 15 | 16 | 0.05 | 0.02 | | B. 4B.C | | | | | | DMRC006 | 15 | 16 | 0.11 | 0.04 | | DMRC006 | 16 | 17 | 0.91 | 0.25 | | DIABOOS | 47 | 4.0 | | 11 /10 | | DMRC006 | 17 | 18 | 1.42 | 0.49 | | DMRC006 | 18 | 19 | 1.33 | 0.57 | | | | | | | | DMRC006
DMRC006 | 18
19 | 19
20 | 1.33
0.20 | 0.57
0.11 | | DMRC006
DMRC006 | 18
19
15 | 19
20
16 | 1.33
0.20
0.15 | 0.57
0.11
0.04 | | DMRC006
DMRC006 | 18
19 | 19
20 | 1.33
0.20 | 0.57
0.11 | | DMRC010 | 18 | 19 | 0.93 | 0.36 | |---------|----|----|------|------| | DMRC010 | 19 | 20 | 0.21 | 0.08 | # JORC Code, 2012 Edition – Table 1 # Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Reverse circulation drilling was carried out to test a number of targets to the south-west of Fraser's prospect that had been identified during earlier rock chip sampling work and then in the recently interpreted aeromagnetic and radiometric data. Drill chip samples are collected from one-metre intervals from which a 2-4kg sample was collected for submission to the laboratory for analysis for rare earths, rare metals, U, Th and a range of rock-forming elements. The main aim of this programme is to provide material for a bulk composite for pilot plant test work. Mineralised zones were identified visually during geological logging in the field. Samples from each metre were collected in a cyclone and split using a 3 level riffle splitter. Field duplicates, blanks and Reference Standards were inserted at a rate of approximately 1 in 20. No previous drilling has been carried out in this area. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole
hammer, rotary air blast, auger, Bangka, sonic,
etc) and details (eg core diameter, triple or
standard tube, depth of diamond tails, face-
sampling bit or other type, whether core is
oriented and if so, by what method, etc). | Reverse Circulation drilling at the various targets
utilised a nominal 5 1/4 inch diameter face-
sampling hammer. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Recoveries are recorded by the geologist in the field at the time of drilling/logging. If poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Visual assessment is made for moisture and contamination. A cyclone and splitter were used to ensure representative samples and were routinely cleaned. Sample recoveries to date have generally been high, and moisture in samples minimal. Insufficient data is available at present to determine if a relationship exists between recovery and grade. | | Logging | Whether core and chip samples have been
geologically and geotechnically logged to a level
of detail to support appropriate Mineral
Resource estimation, mining studies and | All drill chip samples are geologically logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Logging is considered to be semi-quantitative given the nature of reverse circulation drill chips. All RC drill holes in the current programme are logged in full. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | The RC drilling rig is equipped with an in-built cyclone and triple tier riffle splitting system, which provided one bulk sample of approximately 25kg, and a sub-sample of 2-4kg per metre drilled. All samples were split using the system described above to maximise and maintain consistent representivity. The majority of samples were dry. For wet samples the cleanliness of the cyclone and splitter was constantly monitored by the geologist and maintained to avoid contamination. Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags. Field duplicates were collected directly from the splitter as drilling proceeded through a secondary sample chute. These duplicates were designed for lab checks as well as lab umpire analysis. A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style of mineralisation. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Genalysis (Perth) was used for all analysis work carried out on the 1m drill chip samples and the rock chip samples. The laboratory techniques below are for all samples submitted to Genalysis and are considered appropriate for the style of mineralisation defined at the Yangibana REE Project: FP6/MS Blind field duplicates were collected at a rate of approximately 1 duplicate for every 20 samples that are to be submitted to Genalysis for laboratory analysis. Field duplicates were split directly from the splitter as drilling proceeded at the request of the supervising geologist. | | Verification
of sampling
and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | At least two company personnel verify all significant intersections. All geological logging and sampling information is completed firstly on to paper logs before being transferred to Microsoft Excel spreadsheets. Physical logs and sampling data are returned to the Hastings head office for scanning and storage. Electronic copies of all information are backed up daily. No adjustments of assay data are considered necessary. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | A Garmin GPSMap62 hand-held GPS is used to define the location of the drill hole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within 5m. Collars will be picked up by DGPS in the future. Down hole surveys are conducted by the drill contractors using a Reflex electronic single-shot camera with readings for dip and magnetic azimuth nominally taken every 30m down hole, except in holes of less than 30m. The instrument is positioned within a stainless steel drill rod so as not to affect the magnetic azimuth. Grid system used is MGA 94 (Zone 50) Topographic control is based on the detailed 1m topographic survey undertaken by Hyvista Corporation in 2016. | | Data spacing
and
distribution | Data spacing for reporting of Exploration
Results. Whether the data spacing and distribution is
sufficient to establish the degree of geological
and grade continuity appropriate for the Mineral
Resource and Ore Reserve estimation
procedure(s) and classifications applied. Whether sample compositing has been applied. | Hole collars were initially laid out at 50m along the strike of the outcropping mineralisation and the trace of the aeromagnetic/radiometric anomaly. Collar locations were varied slightly dependent on access at a given site and some holes were not drilled based on geological considerations. Further details are provided in the collar coordinate table contained elsewhere in this report. No sample compositing is used in this report, all results detailed are the product of 1m downhole sample intervals. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Most drill holes in the current programme are at -60° (subject to access to the preferred collar position) and as such intersected widths do not represent true thickness. | | Sample
security | The measures taken to ensure sample security. | The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: Hastings Technology Metals Ltd Address of laboratory Sample range Samples were delivered by Hastings personnel to the Nexus Logistics base in order to be loaded on the next available truck for delivery to Genalysis. The freight provider delivers the samples directly to the laboratory. Detailed records are kept of all samples that are dispatched, including details of | | Criteria | JORC Code explanation | Commentary | |----------------------|---|--| | | | chain of custody. | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | No audit of sampling data has been completed to
date but a review will be conducted once all data
from Genalysis (Perth) has been received. Data is
validated when loading into the database and will
be validated again prior to any Resource
estimation studies. | # Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The RC drilling at the targets to the south-west of Fraser's that are reported in this document was carried out within E09/1989. All Yangibana tenements are in good standing and no known impediments exist. | | Exploration done by other parties | Acknowledgment and appraisal of exploration
by other parties. | No previous exploration has been carried in this
portion of the project area. | | Geology | Deposit type, geological setting and style of
mineralisation. | The Yangibana ironstones within the Yangibana Project are part of an extensive REE-mineralised system associated with the Gifford Creek Carbonatite Complex. The lenses have a total strike length of at least 12km. These ironstone lenses have been explored previously for base metals, manganese, uranium, diamonds and rare earths. The ironstones are considered by GSWA to be coeval with the numerous carbonatite sills that occur within Hastings tenements, or at least part of the same magmatic/hydrothermal system. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material | Refer to details of drilling in table in the body of
this report and the appendices. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | All intervals reported are composed of 1m downhole intervals and as such are length weighted. A lower cut-off grade of 0.20%Nd₂O₃+Pr₂O₃ has been used for assessing significant intercepts, and no upper cut-off grade was applied. Maximum internal dilution of 1m was incorporated in reported significant intercepts. The basis for the metal equivalents used for reporting are provided in the body of the ASX announcement. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | True widths for mineralisation have not been calculated and as such only downhole lengths have been reported. It is expected that true widths will be less than downhole widths, due to the apparent dip of the mineralisation. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Appropriate maps and sections are available in
the body of this ASX announcement. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and high
grades and/or widths should be practiced to
avoid misleading reporting of Exploration
Results. | Reporting of results in this report is considered
balanced. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Geological mapping has continued in the vicinity
of the drilling as the programme proceeds. | | Further work | The nature and scale of planned further work
(eg tests for lateral extensions, depth
extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of
possible extensions, including the main | The current drilling programme is primarily
designed to test for new resources within short
trucking distances from the proposed plant site. | | Criteria | JORC Code explanation | Commentary | |----------|--|------------| | | geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | |